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Differential equations for the local Green function in the 
tight-binding model on a regular latticet 

I L Mayer and J Nuttall 
Department of Physics, The University of Western Ontario, London, Ontario, Canada 
N6A 3K7 

Received 16 September 1986 

Abstract. For the tight-binding model of electron motion in a perfect crystal we propose 
a method for obtaining an ordinary differential equation satisfied by the local Green 
function. Such an equation probably exists for every case. 

1. Introduction 

A variety of methods has been used in the past to calculate Green functions and the 
related density of states in the tight-binding model for electron motion in a perfect 
crystal (Morita and Horiguchi 1971, Haydock et a1 1972, Gaspard and Cyrot-Lackmann 
1973). Many of these are based on the summation of a divergent high-energy expansion 
(Haydock 1980). In a few cases (Joyce 1971, 1973) it has been shown that the matrix 
elements of the Green function satisfy an ordinary differential equation with polynomial 
coefficients, with energy E as an independent variable. The purpose of this paper is 
to suggest that the Green function matrix elements probably always satisfy an equation 
of this form, and to indicate how the equation may be found. We give results for a 
number of examples. The method originally leads to a set of coupled first-order 
equations, and in some cases we have not performed the reduction to a single higher- 
order equation. The set is just as useful and informative. 

It should be possible to apply standard numerical techniques to the differential 
equation(s) to obtain accurate solutions, including results for those values of E near 
singularities such as band edges or Van Hove singularities, which are often difficult 
to handle with other approaches. The derivation of the equation(s) involves substantial 
amounts of algebra in the more complicated cases. This algebra could be carried out 
using one of the symbolic computation systems now available. 

2. Integral representation for Green function matrix elements 

We suppose that the crystal is based on a lattice of dimension v, with lattice points 
given by An, where n = ( n ,  , n,, . . . , n,) has integer components and A is a v x v matrix. 
The Schrodinger equation used in the most general form of the tight-binding model 
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(e.g. as derived from the LCAO method (Jones 1975, Economou 1979)) for the motion 
of an electron through the crystal may be written as 

H q  = EN* (2.1) 

where q has components qn, n E Z", each of which is a 7-dimensional column matrix 
to allow for structure within each unit cell. The matrix H has elements If,,,, n, m E Z", 
each of which is a 7 x 17 matrix, and is such that Hn,,, depends only on n - m. We write 

H , , , = B ( m - n )  (2.2) 

where B ( f )  will be zero unless I is close to 0. An additional property that follows 
from the Hermiticity and translational invariance of the underlying Hamiltonian is 
that B ( - I )  = B(I)+ (Jones 1975). The matrix N will have a similar structure to that 
of H, with D ( I )  taking the place of B ( I ) ,  and will often be the unit matrix. 

The local Green function associated with site 0 is a 17 x 7 matrix 

G ( z )  = C ,  (E ( z D ( I ) - B ( I ) )  exp(ip. AI) )-k (2.3) 
p e B Z  I 

where the integral is restricted to the first Brillouin zone, and C ,  is a constant. If we 
set p = (AT)-'h, then (2.3) becomes 

G ( z )  = C2 dh,  . . . dh, (c ( zD(Z)  - B ( I ) )  exp(ih I )  
I 

(2.4) 

with C2 another constant. 
In this paper we shall restrict attention to g ( z )  = 7-l Tr G ( z ) .  but the methods used 

can easily be extended to other elements of G ( z )  and to elements of the Green function 
connecting different lattice sites. 

If we write the inverse matrix in the integrand of (2.4) in the form adj/det, then it 
may be seen that g ( z )  may be expressed as 

g ( z )  = dh,  . , . dh, N ( z ,  h ) / P ( z ,  h )  

where N ( z ,  h ) ,  P ( z ,  h )  are polynomials with real coefficients in the variables z and 
sin h, ,  cos h, ,  i = 1, . . . , v. I 

3. Differential equations in the general case 

To simplify the presentation we use the symbol (sin h) '  to mean 

and similarly (cos h) ' .  Also we let 5 represent j;"dh, . . . ji"dh,. We define ( I 1  = 
I ,  + I,+. . .+I, and let E ,  denote the v component vector with 1 in the ith place, zero 
elsewhere. We write 

(3.2) 

where the sum over I ,  m includes a finite set of values, and q(1, m ;  z )  is a polynomial 
in z. 
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We show how to obtain coupled equations involving the quantities 

Z ( I ,  m; z )  = 

I,  m E Z:. I (cos h)'(sin ~ ) " / P ( z ,  h )  I 
I J(1 ,  m; z )  = (cos h)'(sin h ) " / P ( z ,  h)' 

It is then easy to obtain equations involving g ( z ) .  
If we define 

C ( I ,  m )  = (cos h)'(sin h)" I 

(3 .3a )  

(3 .3b)  

(3.4) 

then inserting P I P  in (3 .4)  leads to 

2 q ( k , n ; z ) ~ ( l + k , m + n ; z ) = C ( I , m )  I ,  m E Z:. (3 .5)  
k.n 

In a similar manner from the definition ( 3 . 3 ~ )  of I ( / ,  m; z ) ,  we obtain 

C q ( k , n ; z ) J ( I + k , m + n ; z ) = Z ( I , m ; z )  I, m E ZY. (3.6) 

Another type of relation comes from differentiating the expression (3 .3a )  for 

(3 .7)  

Relations of yet another form may be obtained by integrating (3 .3a)  by parts. If  
I ,  > 0 we integrate the factor cos h, and differentiate the remaining factor of the integrand 
with respect to the variable h, to give 

Z ( 1 ,  m; z )  = 

k, n 

Z ( I ,  m; z )  with respect to z, and we find (with ' meaning d/dz)  

Z ( I ,  m; z ) ' =  -C q ( k ,  n ;  z ) ' ~ ( I + k ,  m + n ;  z )  I ,  m E Z;. 
k,n 

sin h, [ ( I ,  - l)(cos h)'-''l(sin h)"+'t 

- m,(cos h)'(sin h ) " - ' l ] / ~ ( z ,  h )  
I [  
= ( I , - ~ ) Z ( I - ~ E , , ~ + ~ E , ;  z ) - r n , Z ( l , m ; z )  

-E q ( k , n ; z ) ( k , J ( f + k - 2 ~ , , m + n + 2 ~ , ; z )  

- n , J ( I + k ,  m + n ;  z ) )  I , m ~ Z z , l , > 0 ,  i = l ,  . . . ,  v. (3 .8)  

k ,  n 

Similarly, integrating the factor sin h ,  we obtain 

Z(1,m; z ) = ( r n , - l ) Z ( l + 2 ~ , , m - 2 ~ , ;  z ) - l , Z ( l , m ;  z )  

-E q ( k , n ;  z ) ( k , ~ ( ~ + k , m + n ;  z ) - n , ~ ( I + k + 2 ~ , , m + n - 2 ~ , ;  z ) )  

1 , m E Z :  r n , > O , i = l ,  . . . ,  v. (3 .9)  

k . n  

I t  is only necessary to consider values of rn, < 2,  for using (sin h r ) 2  = 1 -(cos h , ) ' ,  
we have 

rn, 2 2 .  (3 .10)  
I ( 1 , m ;  z ) = I ( I , m - 2 ~ , ;  z ) - Z ( I + 2 ~ , , m - 2 ~ , ;  z )  

J ( l , m ;  z ) = J ( I , m - 2 ~ , ;  z ) - J ( 1 + 2 ~ , , m - 2 ~ , ;  z )  



2360 I L Mayer and J Nutrall 

Now suppose we consider all the equations (3.5)-(3.10) corresponding to I f )S L, 
Iml s L for some positive integer L. If L is large enough there will be more of these 
equations than there are unknown I ( f ,  m ;  z ) ,  J ( f ,  m ;  z ) .  We conjecture that there exists 
a value of L such that a subset of these equations may be found which contains as 
many independent equations as unknowns, and that, from these unknowns, all others 
may be determined, We have no proof of this conjecture in the general case. The 
remainder of the paper consists of showing it to be true in a number of examples. The 
methods we use can be applied to any other case of interest in the search for the 
equations of the conjecture. 

4. Examples 

The general ideas set out in 0 3 will now be illustrated by examples. 

4.1. Triangular lattice 

For this two-dimensional lattice we take 

We take 7 = 1 and assume only nearest-neighbour interactions, so that 

D(0)  = 1 D ( f ) = O  f Z 0  

B ( f )  = 1 1 = ( L O ) ,  ( 1 , 1 ) ,  (0, l ) ,  (--1,O), ( - 1 ,  - - I ) ,  (0, - 1 )  

B ( f ) = O  otherwise. 

If we use (2.3) rather than (2.4) no sine functions appear and we have 

g ( z )  = (27r)-, Io2- de1 Io2' d02(z - T (  e))-' 

where 

T (  e) = 4 COS el (COS el + COS e,) - 2 

61 = P112 

and we have set 

e, = Jsp2/2. 
The integral (4.3) is of the form ( 2 . 5 ) .  We can obtain coupled equations for I ( f ;  z )  

given by 

I (  f ;  Z )  = I (  f, 0; Z )  = (COS e) ' (  z - T(  e))-l. I (4.6) 

If we set 

T ( O ) = C  r(f)(cos e)' (4.7) 
1 

where t (0 )  = -2, t(2,O) = 4, t (  1, 1 )  = 4 and t ( f )  = 0 otherwise, then (3.5) may be written 
as 

z I ( f ;  z ) = C  t ( k ) I ( f + k ;  z ) + C ( f )  f E Z :  
k 

(4.8) 
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where 

C(1) = C(1, 0). 

In this caseJ(I ,m;z)=-Z(1,m;z)’and Z ( I , ~ ~ , ; Z ) = Z ( I , O ; Z ) - - I ( ~ + ~ ~ , , O ; Z ) ,  so 
that the equations obtained by integrating (4.6) by parts, the special cases of (3 .8) ,  
may be written 

Z ( 1 ;  z ) = ( l l - l ) ( Z ( l - 2 & l ;  z)-Z(f;  Z ) ) + C  t ( k ) k , ( l ( k + l ;  z)’ 
k 

-Z(k+ l -2&, ;  z)’) 1EZ:,l ,>O,i=1, . . . )  v. (4.9) 
We take (4.8) for 1 = (O,O), (2,0), (1, l ) ,  (0,2) and (4.9) for 1 = (2,0), (0,2) and 

( 1 , l )  with i = 1, 2, which gives eight equations for the eight unknowns Z ( k ;  z) corre- 
sponding to k = (O,O), (2,0), (0,2),  (1, l ) ,  (4, O), (3, l ) ,  (2,2), (1,3). In terms of 

the equations may be written 
zf$= w # l + x * + y  

YCp’+Z*’+Sf$ = o  
-2 4 4 0 0 0 0  

0 4 4 0  
0 -2 0 0 4 4  

0 -8 -4 0 8 4 0 0  
0 0 0 4  

0 -4 0 0 4 0  

Differentiating (4.11) gives 

(z - W)+‘- X$‘+ f$ = 0. 

Y-2 [ ;] 
1 -2 0 
1 0 0  
0 0 -1 
0 0 -1 

s =  [ 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
The matrix Z is not singular, so that we may solve (4.12) for $’ and substitute in 
(4.14), with the result that 

( z - U ) 4 ’ + V 4 = 0  (4.15) 
where 

v = 1 + x z - ’ s =  [i ! 11 
1 0 -1 -1 

(4.16) 
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Equation (4.1 5 )  constitutes four independent equations for four unknowns. Since V 
is of rank 2, two first-order equations for 4, ,  c$3+44 may be obtained, from which 
c$~+ C#J~ may be eliminated to give a second-order equation for 4I = g(z ) ,  

( z + ~ ) ( z  + 2 ) ( ~  -6)g"'+ (3z2-2z -24)g"'+ zg = 0. (4.17) 

The finite singular points of the equation occur at the zeros of the coefficient of g"', 
namely z = -3, -2, 6. 

4.2. Simple cubic lattice (Joyce 1973) 

For the simple cubic lattice with nearest-neighbour interactions we have 7 = 1 and 

(4.18) 

D(0)  = 1 D(1) = O  I f 0  

B ( 1 )  = 1 1 = (*l, 0, O ) ,  (0 ,  *l, 01, ( O , O ,  *I)  

B ( 1 )  = 0 otherwise. 

(4.19) 

With h, = e,, i = 1, 2, 3, we may write 

(4.20) 

where 

T (  e) =  COS el + COS ez + COS e 3 ) .  (4.21) 

In this case we have (4.7) with 

t( l ,O, 0) = t (0 ,  1,O) = t ( O , O ,  1) = 2 and (4.22) 

Relations (4.8) and (4.9) apply with this choice of t ( 1 ) .  The symmetry of T ( 6 )  leads 
to 1(1,, 1 2 ,  I ,;  z) = Z(cr(l l ,  1 2 ,  1 3 ) ;  z)  for all permutations (+ of 11, 1 2 ,  I , ,  etc, and we use 
this below. 

We take (4.8) for 1 = ( O , O ,  0), (1 ,0 ,0) ,  (1, 1,0),  (1, 1, 1) and  (4.9) for I = (1,0,0),  
(1, 1,0),  (1, 1, 1). The result may be written 

t ( 1 )  = 0 otherwise. 

(4.23) 

(4.24) 

z 4 =  w4+x* 

where 

and  *(z) = (4.25) 



Differential equations for the local Green function 2363 

with 

0 6 0 0  0 0 0  
0 0 4 0  
0 0 0 2  0 4 0  
0 0 0 0  0 0 6  

2 0 0 0  
Y = O  2 0 0 

[ o o 2 . 1  

.-[ -: -2 0 :] 
0 -2 

0 1 0 0  
s = o  0 1 0 ,  

[ o  0 0 1] 

Differentiating ( ) and eliminating $ leads to 

( z -  U ) 4 ' +  vr$ = o  
with 

0 6 0 0  

0 0 6 0  

1 0  0 

V = [ O  0 O 0 -1  O B] 
0 0  0 - 2  

(4 ,.26) 

(4.27) 

(4.28) 

Since V is of rank 3, three coupled equations may be derived from (4.27) and a single 
equation for g (z )  =constant I ( 0 ,  0,O; z)  is obtained, namely 

( z4 - 40z2 + 144)g0'+ (6z3 - 1 2 0 ~ ) g " ' +  (7z2 - 48)g"'S zg = 0. (4.29) 

4.3. Kagome' lattice 

This lattice is based on a triangular lattice with three sites (nearest neighbours) per 
unit cell. Thus v = 2 ,  A is as in (4.1) but 7 = 3 .  To describe nearest-neighbour 
interactions, we take 

D(O),, = 8, mol, = 0 I Z O  

N O ) ,  = 1 i ,  j = 1,2,  3 (4.30) 

l)12= E(-1, - l ) 2 1  = l)13 = - l ) 3 1  

= E(-1, 0)23 = B(1, 0)32  = 1 

B ( 0 ,  = 0 otherwise. 

Using (2.3) with (4.5) and (4.30) we find that g ( z )  may be written 

g (z )  = lo2'' d e ,  de2  w, 8 ) i p ( z ,  e) (4.31) 

where 

P(Z, e) = (COS e) 'q( i ;  z) .  (4.32) 
I 

Here 

q(0,O; z)  = z3 -4z = a 

4 ( 2 , O ; z ) = q ( l ,  l ; ~ ) = - 4 ~ - 8 = b  say 

say 

q(1; z)  = 0 otherwise 

(4.33) 
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0 0 0 -  
.1 0 0 
0 - 1  0 
0 0 -1 
2 0 0  
0 1 0  
0 1 0  
0 0 2 ,  

and 

W =  

(4.34) 

- -1 
0 -  
0 
0 

-1 
0 
0 

-1 

We construct equations coupling I(f; z), J ( f ;  z), where 

I(!; Z )  = z(1,o; Z )  = (COS e)‘p(z, e)-’ 

J ( f ; z ) = J ( i , o ; ~ ) =  ( c o s ~ ) ’ P ( z , ~ ) - * .  

(4.35) 
I 
I 

We take (3.6) and (3.7) for 1 = (0, O), (2, O), (1, l ) ,  (0,2) and (3.8) for 1 = (2, O), (0,2) 
and (1, 1) with i = 1, 2. With 

4 ( z )  = [ I ( ( ) ,  0; z), 1(2,0; z), 1(1,1; z), 41’ 
*(z) = [J(O, 0; z), J(2,O; z), J(1,1; z), J(0,2; z), J(4,O; z), (4.36) 

J(3,1;  z), J(2,2; z), J ( L 3 ;  41’ 
these equations may be written as 

wfp+x*=o 
d ‘ + Z * = O  

X =  

‘ a b b O O  0 0 0  
O a O O  b b 0 0  
O O a O O  b b O  
O O O a O  0 b b  
0 26 b 0 -2b -b 0 0 
0 0 2b b 0 -2b -b 0 
O b 0 0 0  O - b O  

. O O b O O  0 O - b  

(4.37) 

(4.38) 

(4.39) 

0 0 a ’ 0  0 b ’ b ’ O *  

a ’ b ’ b ’ O  0 0 0 0 
0 a ‘ O  0 b ’ b ’ O  0 

0 0 0 a ’ 0  0 b ’ b ’  

(4.40) 

It may be checked that det X is not identically zero, so that (4.37) may be solved 
I 

to give * = -x-’w4. 
Substitution in (4.38) leads to 

4’ - zx - wl$ = 0 (4.41) 
four coupled equations for the four quantities making up 4. It is found that 

the zeros of det X being singular points of (4.41). 

equation for g(  z) could be obtained. 

det X = 1024z2(z + 2)9(z - 1)2(z - 2)2( z -4) (4.42) 

Since g(z) is a linear combination of the components of 4, a single fourth-order 
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We now summarise the results, obtained in the same way, for several other lattices. 
In each case D ( 0 )  = 1, D ( f )  = 0, 1 # 0 and we assume only nearest-neighbour interac- 
tions. Unless noted 77 = 1. 

4.4. Square lattice (Katsura and Inawashiro 1971 ) 

B ( f )  = 1 f = (*l, O), (0, *1) 

B ( f ) = O  otherwise 

( z 3 -  16z)g‘”+(3Z2- 16)g‘”+ zg=o. 

4.5. Honeycomb lattice 

-112 
A = [ : :  m 2 1  

77=2 

B ( h 2  = 1 

B(021= 1 

B( f ) v  = 0 otherwise 

( z 6  - ioz4+ 9 ~ ~ ) ~ ( ~ ) +  (32’ - 1oZ3 -9z)g‘”+ (z4 - 2z2 +9)g = 0. 

I =  (1,1), (-1, O), (0, -1) 

I = (-1, -11, (LO), 

4.6. Body-centred cubic lattice (Joyce 1971) 

t, - t ,  

- t, 4 
A = [  t ,  t ,  - I ]  t = l / J 3  

B( I )  = 1 f = (*l, 0, O), (0, * l ,  01, (O,O, *l), (L1,  I ) ,  (-19 -1, -1) 

B ( f )  = 0 otherwise 

( ~ ~ - 6 4 ~ ~ ) g ‘ ~ ) + ( 6 ~ ~  - 1 9 2 ~ ) g ‘ ~ ’ + ( 7 ~ ~ - 6 4 ) g ‘ ~ ’ +  Zg =O. 

4.7. Face-centred cubic lattice 

A = [ :  s, :: s, O :] s = l / J 2  
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4.8. Diamond lattice 
- t  

A =  [ t -:] t = l / J 3  
- t ,  t ,  t 

4.9. Hypercubic lattice 

B(1)  = 1 

B(1)  = 0 otherwise 

1 = (*l ,  o,o,  01, (0, *l ,  0, O ) ,  ( O , O ,  *I, O ) ,  ( O , O , O ,  * I )  

(z'  -80z3+ 1 0 2 3 ~ ) g ' ~ ' +  ( 1 0 ~ ~ - 4 8 0 ~ ~ + 2 0 4 8 ) g ' ~ ' +  (25z3-608z)g'" 

+ ( 1 5 Z ~ - l 2 8 ) g ( ~ ) + z g = 0 .  
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